Search results for "antimicrobial materials"

showing 2 items of 2 documents

New Microbe Killers: Self-Assembled Silver(I) Coordination Polymers Driven by a Cagelike Aminophosphine

2019

New Ag(I) coordination polymers, formulated as [Ag(&micro

Electrospray ionizationInfrared spectroscopymetal-organic frameworks (mofs)02 engineering and technologyCrystal structure010402 general chemistry01 natural scienceslcsh:TechnologyArticleCoordination complexantimicrobial materialsGeneral Materials Sciencesilver135-triaza-7-phospaadamantanelcsh:Microscopylcsh:QC120-168.85chemistry.chemical_classificationlcsh:QH201-278.5ChemistryHydrogen bondlcsh:TPolymer021001 nanoscience & nanotechnology0104 chemical sciencesCrystallographycoordination polymersMicrocrystallinelcsh:TA1-2040coordination chemistrylcsh:Descriptive and experimental mechanicslcsh:Electrical engineering. Electronics. Nuclear engineering0210 nano-technologylcsh:Engineering (General). Civil engineering (General)lcsh:TK1-9971Powder diffractionMaterials
researchProduct

New Microbe Killers : Self-Assembled Silver(I) Coordination Polymers Driven by a Cagelike Aminophosphine

2019

New Ag(I) coordination polymers, formulated as [Ag(μ-PTAH)(NO3)2]n (1) and [Ag(μ-PTA)(NO2)]n (2), were self-assembled as light- and air-stable microcrystalline solids and fully characterized by NMR and IR spectroscopy, electrospray ionization mass spectrometry (ESI-MS(±), elemental analysis, powder (PXRD) and single-crystal X-ray diffraction. Their crystal structures reveal resembling 1D metal-ligand chains that are driven by the 1,3,5-triaza-7-phospaadamantane (PTA) linkers and supported by terminal nitrate or nitrite ligands; these chains were classified within a 2C1 topological type. Additionally, the structure of 1 features a 1D!2D network extension through intermolecular hydrogen bonds…

antimikrobiset yhdisteetcoordination polymersmetal-organic frameworks (MOFs)coordination chemistryhopeasilver135-triaza-7-phospaadamantanekompleksiyhdisteetorganometalliyhdisteetpolymeeritantimicrobial materials
researchProduct